Sifat Spektroskopik Termal Asam Nukleat

(Tulisan Sifat Spektroskopik Termal Asam Nukleat adalah bagian dari artikel dengan judul Tinjauan Asam Nukleat. Bila anda memerlukannya sebagai bahan referensi, artikel tersebut bisa anda DOWNLOAD DISINI)

Sifat spektroskopik-termal asam nukleat meliputi kemampuan absorpsi sinar UV, hipokromisitas, penghitungan konsentrasi asam nukleat, penentuan kemurnian DNA, serta denaturasi termal dan renaturasi asam nukleat. Masing-masing akan dibicarakan sekilas berikut ini.

Absorpsi UV
Asam nukleat dapat mengabsorpsi sinar UV karena adanya basa nitrogen yang bersifat aromatik; fosfat dan gula tidak memberikan kontribusi dalam absorpsi UV. Panjang gelombang untuk absorpsi maksimum baik oleh DNA maupun RNA adalah 260 nm atau dikatakan λmaks = 260 nm. Nilai ini jelas sangat berbeda dengan nilai untuk protein yang mempunyai λmaks = 280 nm. Sifat-sifat absorpsi asam nukleat dapat digunakan untuk deteksi, kuantifikasi, dan perkiraan kemurniannya.

Hipokromisitas
Meskipun λmaks untuk DNA dan RNA konstan, ternyata ada perbedaan nilai yang bergantung kepada lingkungan di sekitar basa berada. Dalam hal ini, absorbansi pada λ 260 nm (A260) memperlihatkan variasi di antara basa-basa pada kondisi yang berbeda. Nilai tertinggi terlihat pada nukleotida yang diisolasi, nilai sedang diperoleh pada molekul DNA rantai tunggal (ssDNA) atau RNA, dan nilai terendah dijumpai pada DNA rantai ganda (dsDNA). Efek ini disebabkan oleh pengikatan basa di dalam lingkungan hidrofobik. Istilah klasik untuk menyatakan perbedaan nilai absorbansi tersebut adalah hipokromisitas. Molekul dsDNA dikatakan relatif hipokromik (kurang berwarna) bila dibandingkan dengan ssDNA. Sebaliknya, ssDNA dikatakan hiperkromik terhadap dsDNA.

Penghitungan konsentrasi asam nukleat
Konsentrasi DNA dihitung atas dasar nilai A260-nya. Molekul dsDNA dengan konsentrasi 1mg/ml mempunyai A260 sebesar 20, sedangkan konsentrasi yang sama untuk molekul ssDNA atau RNA mempunyai A260 lebih kurang sebesar 25. Nilai A260 untuk ssDNA dan RNA hanya merupakan perkiraan karena kandungan basa purin dan pirimidin pada kedua molekul tersebut tidak selalu sama, dan nilai A260 purin tidak sama dengan nilai A260 pirimidin. Pada dsDNA, yang selalu mempunyai kandungan purin dan pirimidin sama, nilai A260 -nya sudah pasti.

Kemurnian asam nukleat
Tingkat kemurnian asam nukleat dapat diestimasi melalui penentuan nisbah A260 terhadap A280. Molekul dsDNA murni mempunyai nisbah A260 /A280 sebesar 1,8. Sementara itu, RNA murni mempunyai nisbah A260 /A280 sekitar 2,0. Protein, dengan λmaks = 280 nm, tentu saja mempunyai nisbah A260 /A280 kurang dari 1,0. Oleh karena itu, suatu sampel DNA yang memperlihatkan nilai A260 /A280 lebih dari 1,8 dikatakan terkontaminasi oleh RNA. Sebaliknya, suatu sampel DNA yang memperlihatkan nilai A260 /A280 kurang dari 1,8 dikatakan terkontaminasi oleh protein.

Denaturasi termal dan renaturasi
Di atas telah disinggung bahwa beberapa senyawa kimia tertentu dapat menyebabkan terjadinya denaturasi asam nukleat. Ternyata, panas juga dapat menyebabkan denaturasi asam nukleat. Proses denaturasi ini dapat diikuti melalui pengamatan nilai absorbansi yang meningkat karena molekul rantai ganda (pada dsDNA dan sebagian daerah pada RNA) akan berubah menjadi molekul rantai tunggal. Denaturasi termal pada DNA dan RNA ternyata sangat berbeda. Pada RNA denaturasi berlangsung perlahan dan bersifat acak karena bagian rantai ganda yang pendek akan terdenaturasi lebih dahulu daripada bagian rantai ganda yang panjang.

Tidaklah demikian halnya pada DNA. Denaturasi terjadi sangat cepat dan bersifat koperatif karena denaturasi pada kedua ujung molekul dan pada daerah kaya AT akan mendestabilisasi daerah-daerah di sekitarnya. Suhu ketika molekul asam nukleat mulai mengalami denaturasi dinamakan titik leleh atau melting temperature (Tm). Nilai Tm merupakan fungsi kandungan GC sampel DNA, dan berkisar dari 80 ºC hingga 100ºC untuk molekul-molekul DNA yang panjang. DNA yang mengalami denaturasi termal dapat dipulihkan (direnaturasi) dengan cara didinginkan. Laju pendinginan berpengaruh terhadap hasil renaturasi yang diperoleh.

Pendinginan yang berlangsung cepat hanya memungkinkan renaturasi pada beberapa bagian/daerah tertentu. Sebaliknya, pendinginan yang dilakukan perlahanlahan dapat mengembalikan seluruh molekul DNA ke bentuk rantai ganda seperti semula. Renaturasi yang terjadi antara daerah komplementer dari dua rantai asam nukleat yang berbeda dinamakan hibridisasi.

Superkoiling DNA
Banyak molekul dsDNA berada dalam bentuk sirkuler tertutup atau closedcircular (CC), misalnya DNA plasmid dan kromosom bakteri serta DNA berbagai virus. Artinya, kedua rantai membentuk lingkaran dan satu sama lain dihubungkan sesuai dengan banyaknya putaran heliks (Lk) di dalam molekul DNA tersebut. Sejumlah sifat muncul dari kondisi sirkuler DNA. Cara yang baik untuk membayangkannya adalah menganggap struktur tangga berpilin DNA seperti gelang karet dengan suatu garis yang ditarik di sepanjang gelang tersebut. Jika kita membayangkan suatu pilinan pada gelang, maka deformasi yang terbentuk akan terkunci ke dalam sistem pilinan tersebut. Deformasi inilah yang disebut sebagai superkoiling.

Interkalator
Geometri suatu molekul yang mengalami superkoiling dapat berubah akibat beberapa faktor yang mempengaruhi pilinan internalnya. Sebagai contoh, peningkatan suhu dapat menurunkan jumlah pilinan, atau sebaliknya, peningkatan kekuatan ionik dapat menambah jumlah pilinan. Salah satu faktor yang penting adalah keberadaan interkalator seperti etidium bromid (EtBr). Molekul ini merupakan senyawa aromatik polisiklik bermuatan positif yang menyisip di antara pasangan-pasangan basa. Dengan adanya EtBr molekul DNA dapat divisualisasikan menggunakan paparan sinar UV.

Tulisan terkait